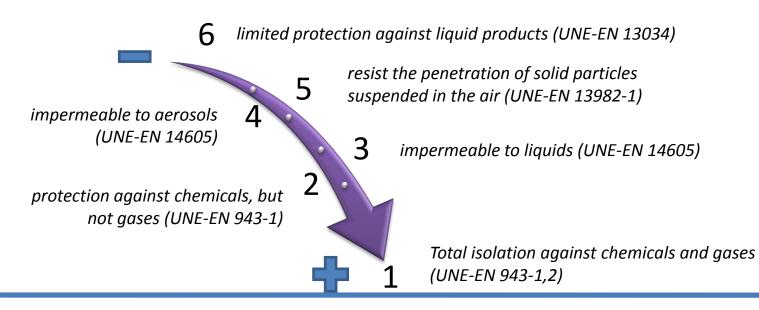


METHODOLOGY FOR TESTING PERSONAL PROTECTIVE CLOTHING AGAINST AIRBORNE NANOPARTICLES

Maidá Domat Nanosafety Area - ITENE <u>maida.domat@itene.com</u>

Project funded from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n^o604387.



Background

Normative

At present, we measure the protection factor of PPE by a flame photometer according standards in function of each PPE (disposable masks, reusable masks, non-ventilated suits, ventilated suits, etc.)

EN 149:2001 + A1:2009	Half masks to protect against particles
NF EN 136-1:1998	Full face masks
NF EN 143-1:2000	Particle filters
EN ISO 13982-2:2004	Protective clothing

Background

State of the art

- If the NM is used in form of **dust**, the use of disposable suits **type 5** is proposed.
- If the NM is used in a **colloidal solution**, the use of **type 4 or 6** is suggested.

Based on Electrospun Nanofibe	rs	
M. Faccini, ¹ C. Vaquero, ² and D. Amanti	-	
¹ Nanomaterialı Division, LEITAT Technological Center, O ² Industry and Transport Division, Tecnalia, P.T. Alava (7)	7 de la henovació 2. 08225 Ternasa, Spain	Australian Government Department of Defence
Correspondence should be addressed to M. Faccini, mfa	ccini@leitat.org	Defence Science and
Received 13 January 2012; Accepted 13 April 2012		Technology Organisation
Academic Editor: Tong Lin		
Copyright © 2012 M. Faccini et al. This is an open acce which permits unrestricted use, distribution, and reprod		Study on Aerosol Penetration Through <mark>Clothing</mark> and Individual Protective Equipment
	iman & Experimental Toxicology (2009) 28: 153-359 w.het.sagrpub.com	Individual Protective Equipment
		berts, Milan Jamriska, Alexei Skvortsov and Rebecca McCallum
Experimental evaluation		berts, Milan Janriska, Alexei Skoortsov and Rebecca McCallum Human Protection and Performance Division Defence Science and Technology Organisation
protection devices agai nanoaerosols: fibrous f	inst graphite ilter media, masl	Human Protection and Performance Division Defence Science and Technology Organisation
protection devices agai	inst graphite ilter media, masl	Human Protection and Performance Division Defence Science and Technology Organisation
protection devices agai nanoaerosols: fibrous f	inst graphite ilter media, mas d gloves	Human Protection and Performance Division Defence Science and Technology Organisation DSTO-TR-2283 ABSTRACT can readily penetrate through air permeable fabrics. Air flow and aeros
protection devices agai nanoaerosols: fibrous f protective <mark>clothing,</mark> and	inst graphite ïlter media, mas d gloves	Human Protection and Performance Division Defence Science and Technology Organisation DSTO-TR-2283 ABSTRACT

 In general, is concluded that nonwoven clothes offer better protection than woven fabrics

Introduction

Objective

- Create and validate a new protocols adapted to nanoparticle measurement
- Correlation between flame photometer and CPC-SMPS measurement
- Evaluate Protection Factor of some existing PPEs (used by industrial partners)

GUIDEnano

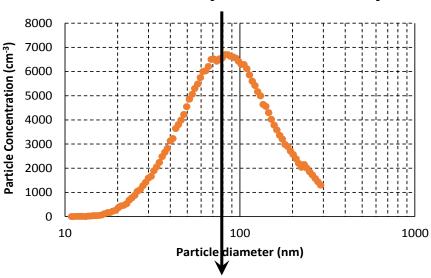
Methodology

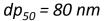
Protocol: Flame photometer vs CPC-SMPS

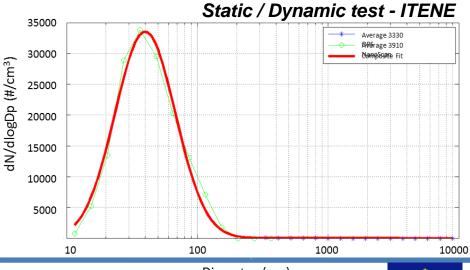
Flame photometer	CPC-SMPS	
Measure in mass per volume (g/m3)	Measure in number	
Mass Median Diameter: 600 nm	Count Median Diameter < 100 nm	
Standard or already existing test setups	Necessity to design or build specific parts of the setup	
Particle nature: only NaCl or HF6	Particle nature: unlimited	
Tests with human subjects	Tests with human subjects only with NaCl, other ENMs tested with mannequins or substitutive parts	
Inward Leakage I. L _{Clo}	$Othing = \frac{C_2}{C_1} \cdot 100$	
Nominal Protection Factor	$PF = \frac{100}{I.L}$	

Methodology

Dynamic test - Honeywell


Particle size distribution


GU


Static / Dynamic test - ITENE

Enano

NM	Concentration (% in 1000 ml H₂O)	Dpg (nm)	Type of Essay	
	0.0001	25		
	0.001	30		
NaCl	0.01	35	static / dynamic	
	0.05	38	uynannt	
	0.1	42		
	0.05	38 - 110		
SiO ₂	0.1	45 - 140	static	
	0.5	x		
TiO ₂	0.05 x		atatia	
	0.5	х	static	

Diameter (nm) Nanosafe, 7 – 10th November 2016, Grenoble

Setup – Dynamic tests

1

3

GUIDE

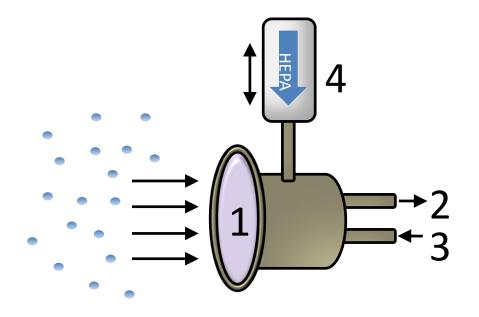
• At least 10 human subjects with good medical conditions

2

6

- Diversity on sizing (S-M-L-XL)
- 3 replicates for each test

	Sampling	Air	Closed
Position 1	Knee	Chest	Waist
Position 2	Waist	Knee	Chest
Position 3	Chest	Waist	Knee



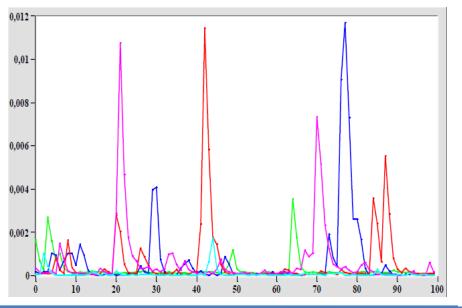
GUIDEnano

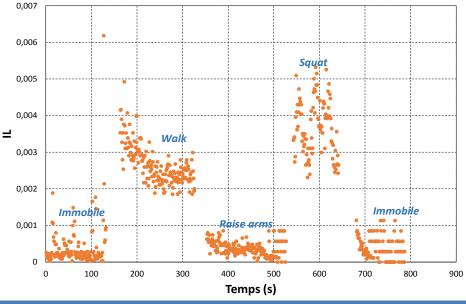
Methodology

Setup – Static tests

- Only fabric of the suit tested
- Sealed or wore by a mannequin
- 3 replicates for each test

Validation of experiments


Correlation between Flame Photometer and CPC-SMPS:


PPE: Ventilated suit FP expected: > 50000

Inward Leakage (IL) by flame photometer

Inward Leakage (IL) by CPC-SMPS

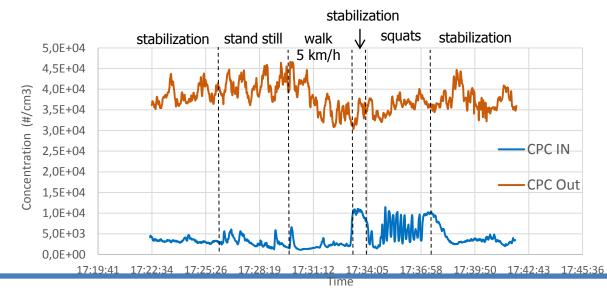
Nanosafe, 7 – 10th November 2016, Grenoble

Validation of experiments

Correlation between Flame Photometer and CPC-SMPS:

PPE: Ventilated suit FP expected: > 50000

Protection factor (PF) by flame photometer							
		0	Walk	Raise arms	Squat	0	Average
Essai 1:	IL	0,00050	0,00168	0,00029	0,00292	0,00014	0,00111
230 L/min	FP	200 000	59 524	344 828	34 247	714 286	90 416
Essai 2:	IL	0,00012	0,00210	0,00014	0,00334	0,00021	0,00118
270 L/min	FP	833 333	47 619	714 286	29 940	476 190	84 602
		P	rotection fac	ctor (PF) by C	PC-SMPS		
		Immobile	Walk	Raise arms	Squat	Immobile	Average
Essai 1:	IL	0,00036	0,00261	0,00058	0,00315	0,00072	0,00148
230 L/min	FP	275 332	38 323	171 468	31 785	138 434	67 346
Essai 2:	IL	0,00040	0,00265	0,00039	0,00367	0,00039	0,00150
270 L/min	FP	249 629	37 665	256 733	27 220	254 381	66 560

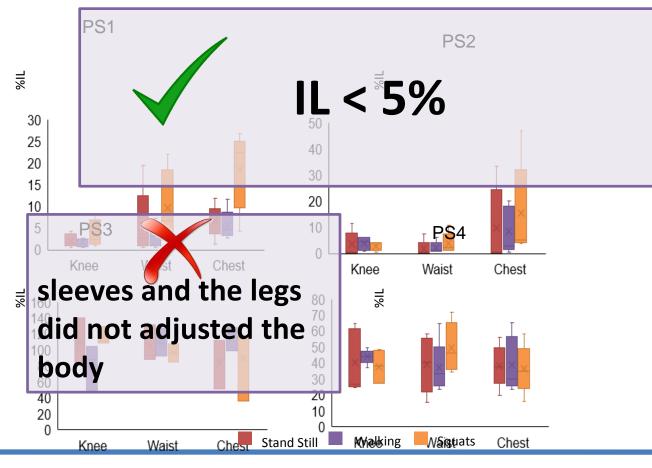


GUIDE

Results

Code	Material	Cat/Type	Reuse/ Disp
PS1	high barrier protection against chemicals (Tyvek type)	Cat III Types 3B, 4B, 5B and 6B	D*
PS2	Million fine and continuous fibers made of high density polyethylene (Tychem type)	Types 5B and 6B	D*
PS3	double-side PVD coated Nylon	Cat III Type 4	R
PS4	Polypropylene	Cat I Type 6	D
PS5	Self ventilated radioactive suit	Type 1	R

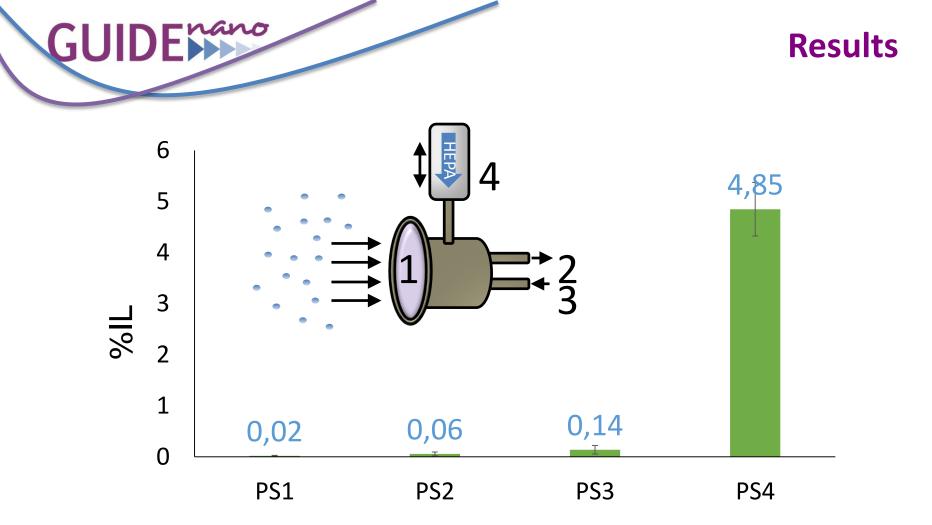
Nanosafe, 7 – 10th November 2016, Grenoble



GUIDE

Results

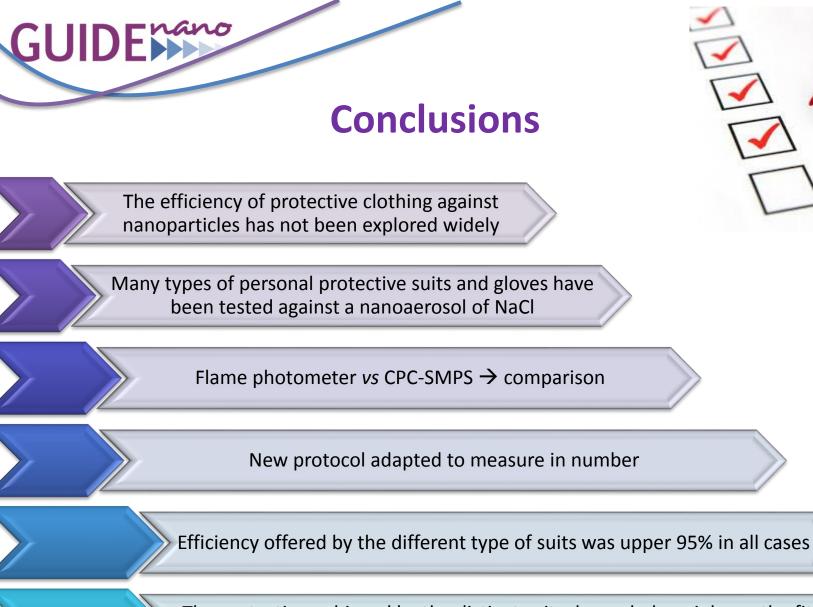
High variability based on gaps in clothing due to:


- Body shape
- Fitting of suit
- Movements which compress or deform the suit.

- protection efficiency against NPs achieved by the fabrics of the PS1, PS2 and PS3 was higher than 99%.
- fabric of the **PS4** offered the lowest level of protection, although it is **over 95%.**

Nanosafe, 7 – 10th November 2016, Grenoble

Round Robin tests


GUIDE

PPE	Туре 3	Type 5/6	Type 4/5	Type 1
Immobile	1480	2003	1182	275332
Raise arms	622	1563	822	38323
Walk at 5 km/h	762	1074	992	171468
Squat	397	407	677	31785
Total PF	397	407	417	67346
Efficiency (%)	<i>99,</i> 75	<i>99,</i> 75	<i>99,76</i>	~ 100

Results correlate to the standard values and to the experiments performed by ITENE

Honeywell

Results

The protection achieved by the distinct suits depended, mainly, on the fitting to the body

Honeywell

Thanks for your attention!

GUIDE

